MARK SCHEME for the October/November 2013 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2		Mark Scheme	Syllabus	Paper
			IGCSE – October/November 2013	0620	31
1	(a)	uranium /	' plutonium / thorium		[1]
	(b)	graphite /	′ carbon		[1]
	(c)		/ titanium / mercury / gold bon / graphite		[1]
	(d)	helium			[1]
	(e)	nitrogen /	/ phosphorus		[1]
	(f)	argon ACCEPT	any ion 2 + 8 + 8 e.g. K⁺ etc.		[1]
	(g)	tellurium ACCEPT	: correct symbol		[1] [Total: 7]
2	(a)	Any three iron is ha iron has h iron has h iron has h iron has r NOTE: ha NOT: app ACCEPT	s harder (1)	[3]	
	(b)	potassiur zinc copper	n hydrogen (1) and potassium hydroxide (1) hydrogen (1) and zinc oxide (1) no reaction (1)		[5] [Total: 8]

	Page 3				Syllabus	Paper
				IGCSE – October/November 2013	0620	31
3	(a)	(i)		ional distillation id) air		[1] [1]
		(ii)	of al	king / heat in presence of catalyst kane / petroleum ve an alkene and hydrogen		[1] [1] [1]
			nam	electrolysis (1) ed electrolyte (1) ogen at cathode (1)		
			reac heat	from methane (1) t water / steam (1) catalyst (1) ACCEPT: water with methane or electrolysis		
	(b)	(i)		pair with both graphs correct is C E: mark (b)(ii) independent of (b)(i)		[1]
		(ii)	this i	pressure favours side with lower volume / fewer moles is RHS / product / ammonia H ₃ / yield increases as pressure increases		[1] [1] [1]
			exot %N⊦	orward reaction is exothermic hermic reactions favoured by low temperatures H ₃ / yield decreases as temperature increases CEPT: reverse arguments		[1] [1] [1]
		(iii)	ACC OR:	eases reaction rate CEPT: reduces activation energy decreases the amount of energy particles need to react		[1] [1]
			OR:	economic rate at lower temperature so higher yield		[Total: 14]
4	(a)	(i)		ss at t =0) – (mass at t = 5) E: must have mass at t = 5 not final mass		[1]
		(ii)	slow	est at origin ing down between origin and flat section gradient = 0 re gradrient = 0		
			thre	e of above in approximately the correct positions		[2]
		(iii)	2 co	rrect comments about gradient = [2] rrect comments about gradient = [1] rrect comment about gradient = [0]		[2]
	(b)			rigin and smaller gradient al mass just approximate rather than exact		[1] [1]

Page 4		Mark Scheme	Syllabus	Paper
		IGCSE – October/November 2013	0620	31
(c) (• •	aller surface area ver collision rate		[1] [1]
(i		ecules have more energy de more frequently / more molecules have enough energy to react		[1] [1]
c r r	number concen maximu mass o maximu	[1] [1] [1] [1]		
				[Total: 15]
5 (a) (• •	ve same molecular formula / both are C ₅ H ₁₂ y have different structural formulae / different structu	res	[1] [1]
(i	ii) C⊦	$_3$ -CH $_2$ -CH=CH-CH $_3$ / any other correct isomer		[1]
(b) (• •	2-(Br)-CH ₂ Br		[1]
	dib	0 T: C₂H₄Br₂ romoethane 0 TE: numbers not required but if given must be 1, 2		[1]
(i		₃ -CH ₂ -CH ₃		[1]
		ν Τ : C ₃ H ₈ pane		[1]
(ii	but	l ₃ -CH ₂ -CH ₂ -CH ₂ -OH / CH ₃ -CH ₂ -CH(OH)-CH ₃ anol mbers not required but if given must be correct and n	natch formula	[1] [1]
(c) (• •	I₃-CH=CH-CH₂-CH₃ I₃-CH=CH-CH₃		[1] [1]
(i	col	k / purple ourless)T: clear		[1] [1]
		H(CN)-CH ₂ -CH(CN)-		
C		repeat unit CH ₂ -CH(CN) at least 2 units in diagram ation		[1] [1] [1]
				[Total:16]

	Page 5			5 Mark Scheme Syll		Syllabus	Paper
	J			IGCSE – October/November 2013 0620			31
6	(a)		and oppo	(negative) (osite charge	e between) positive ions electrons es attract ONLY [1] raction ONLY [1]		[1] [1]
	(ayers of lead ions / cations / positive id rotons / nuclei	ons	[1]
				•	each other / the bonds are non-direction	onal	[1]
	(b)			rdrous coba E PT : hydro	alt chloride becomes hydrated		[1]
	(on dioxide um hydroxi	is acidic de and calcium oxide are bases / alka	lis	[1] [1]
	(i	•	wate	•	carbonate and sodium carbonate um bicarbonate		[2]
	I	i) number of moles of CO ₂ formed = $2.112 / 44 = 0.048$ number of moles of H ₂ O formed = $0.432 / 18 = 0.024$					[1] [1]
				-	F: ecf from this line		
	1	form	iula is	s 2PbCO ₃ .I	Pb(OH) ₂ / Pb(OH) ₂ . 2PbCO ₃		[1]
							[Total:12]
7	(a)			ogen (atom : substitute	ns) replaced by (atoms) of a different e	element e.g. chlorine	[1]
	(ii)	light	required			[1]
	enc				gives out energy		[1]
				mic reactio energy	n adsords		[1]
	((c) bond C-H C <i>l</i> -C total			energy +412 +242 +654		[1]
	(bono C-C H-C	l	rmed	energy –338 –431		
	to e		total energy –769 energy change –115 negative sign indicates exothermic				[1] [1] [1]
							[Total: 8]